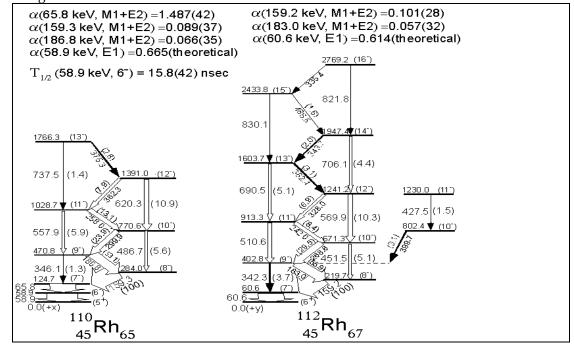
Determinations of multipolarities of low-energy transitions and measurements of level half-lives in neutron-rich ^{110, 112} Rh

Y.X. Luo, J.O. Rasmussen, J.H. Hamilton, A.V. Ramayya, J.K.Hwang, S.J. Zhu, P. M. Gore, S.C. Wu, I.Y. Lee, C.M. Folden III, P. Zielinski, A.O. Macchiavelli, M.A. Stoyer, R. Donangelo, S.J. Asztalos, and A. Gelberg

New level schemes of ^{110, 112}Rh are proposed by using ²⁵²Cf fission triple-coincidence data from Gammasphere taken in 1995 and 2000 [1]. Lowlying transitions with low transition energies are observed for the first time at the bottom of the negative-parity bands (see figure 1). No decay data of ^{110, 112}Rh are available so far for the spin/parity assignments of the low-lying levels on which these negative parity bands are built.

We determine the total internal conversion coefficients of low-energy transitions based on the intensity balance of two cascading transitions in spectra gated from the feeding transitions above. In a downward cascade consisting of γ_4 , γ_3 , γ_2 and γ_1 , by gating at the transitions γ_3 and γ_4 , we have


$$I_1 \times (1 + \alpha_1) = I_2 \times (1 + \alpha_2)$$
 (1)

where I and α indicates the phonon transition intensity and total internal conversion coefficient, and the subscript 1 and 2 represents γ_1 and γ_2 , respectively. If α_1 (or α_2) is known or can be deduced, α_2 (or α_1) is given by Equation (1) by measuring the phonon intensities I in the gated spectrum. Gating on 186.8- and 299.9-keV transi-

tions in ^{110}Rh , the intensity balance of 58.9 and 159.3 keV transitions (and also the decay pattern) only supports the following assignments: 58.9 keV transition as E1 and 159.3 keV as M1 (+E2). Then gating on the 186.8 and 159.3 keV transitions and inserting into Equation (1) the theoretical ICC value of $\alpha(58.9~\text{keV},~\text{E1})$, we determine $\alpha(65.8~\text{keV})$, and, with comparison to theoretical values, M1+E2 is assigned to the 65.8 keV transition. Based on the $\alpha(65.8~\text{keV},~\text{M1+E2})$ obtained, $\alpha(159.3~\text{keV},~\text{M1+E2})$ is determined in the same way, and so is the 186.8 keV transition with gating higher at the 299.9 and 258.0 keV transitions. All the results for 110 , 112 Rh are shown in the level schemes.

Hwang et al. of our collaboration developed a triple-γ-coincidence-timing method to measure the half lives of isomeric states populated in SF [2]. This method was applied to determine the half-life of the 58.9 keV, 6 level of ¹¹⁰Rh (see the figure for results).

- 1. Y.X. Luo et al., to be published
- 2. J.K. Hwang et al., to be published

